Antioximax Celavista

ANTIOXIMAX

Powerful anti-inflammatory and antioxidant neuroprotective agent-ARE

Antioximax® is a natural formulation that promotes powerful, synergistic and complete antioxidant activity. It supports comprehensive protection against oxidative damage caused by free radicals (the direct cause of cellular ageing in our body), as well as supporting good visual health. Antioximax® is designed to contribute to a reduction in physiological oxidative activity and to prevent both exogenous and endogenous pro-oxidative effects. These properties are obtained thanks to an advanced patented formulation that improves its absorption and bioavailability in the body, incorporating polyphenols and flavonoids, as well as Ginkgo, Cyperus, resveratrol, lipoic acid, lutein, nicotinic acid (vitamin B3), zinc and vitamin D, among others.

years of history

active ingredients

extracts

After almost 30 years of history, Antioximax® continues to be an innovative product, thanks to the constant updating of its formulation, which has been adapted to new scientific discoveries in the field of cellular oxidation. It is indicated for the prevention and treatment of all those disorders that involve oxidative stress and affect the body through the generation and accumulation of free radicals at the cellular level, inducing chronic inflammatory and degenerative disorders, accelerating the processes linked to ageing and affecting the integrity and function of the different tissues and systems that make up the body.

Our pharmaceutical technology and our knowledge in the synthesis of active ingredients extracted from plants, as well as the development of the galenic and formulation, allow us to include in a single capsule 60 active ingredients valued in 9 extracts, each one of them at therapeutic doses; representing up to 80% of the whole formulation.

Antioximax-detox-celavista

Eye-flavon® is a balanced complex of high purity and bioavailability to the eye, consisting of polyphenols and flavonoids from extracts of Scutellaria baicalensis, Camellia sinensis, Sophora japonica and Silybum marianum species.

Eye-metabol® is a complex of peptides, amino acids, metabolites and coenzymes from acetyl-L-carnitine, ubiquinol and NADH.

Retimax® is a patented complex, formulated from optimised high purity proanthocyanidins (PAC) from Vaccinium myrtillus extracts.

Iribin® is a high purity complex of saponins and iridoid aglycones such as aucubin and loganin from extracts of Euphrasia officinalis and Cornus officinalis.

Restrol® is a novel, highly pure and highly bioavailable balanced complex of stilbenoids and flavonoids from Polygonum cuspidatum extracts.

Ginkgo biloba (EGb 761®) is a leaf extract and consists of 60 bioactive compounds. In EGb 761® extract, the two main groups of constituents are flavonoids and terpenoids.

Apocyn® is an extract based on apocynin, a natural organic compound structurally related to vanillin.

UMB-99® is an extract based on umbelliferone, a coumarin that can be found in edible plants and fruits.

Capdex® is a compound based on dextrinised capsaicin, a well-known vanilloid that offers a beneficial role in various pathological conditions including obesity, cardiovascular and gastrointestinal disorders, pain, neurogenic bladder and dermatological conditions.

Cypen® is a high purity sesquiterpene complex of Cyperus rotundus extracts.

Lutein is one of the few xanthophylls found in high concentration in the macula of the human retina.

Zinc is an essential nutrient for human health.

Vitamin B3 (nicotinic acid) is the precursor of NAD+, a key molecule in energy and redox metabolism.

Manganese is an essential micronutrient that functions primarily as a coenzyme in several biological processes.

Selenium is a micronutrient known primarily for the antioxidant properties of selenoenzymes, as well as being a component of an enzyme that activates thyroid hormone.

Vitamin D3 is a nutrient necessary for health. It plays a fundamental role in the proper functioning of the body as it is involved in many physiological processes, such as the absorption and maintenance of calcium levels in the bones.

Antioximax-detox-celavista
Main characteristics
  • Neutralisation and control of exogenous oxidative effects and free oxygen radical (ROS) levels caused by unhealthy lifestyle habits or environmental causes: smoking, alcohol consumption, overweight, unhealthy diets, inadequate physical activity, pollution and environmental toxicity, etc.
  • Neutralisation and control of endogenous oxidative effects and levels of free oxygen radicals (ROS) secondary to chronic, inflammatory, autoimmune, degenerative diseases or convalescence after infectious processes, surgical procedures, etc.
  • Neutralisation and control of oxidative effects that affect the reproductive function of men and women, reducing the quantity and quality of spermatozoa or oocytes, respectively, and compromising fertility. Ovarian and testicular ageing, both endogenous and exogenous. Adjuvant treatment to improve reproductive function in general. It can be used prior to any assisted reproduction technique (ART).
  • Control and slowing of cellular ageing.
Descripción profesional del producto

La formulación de Antioximax® contribuye al bienestar a la salud neurológica, visual y vascular, el funcionamiento normal de los vasos sanguíneos en cerebro y ojo, aportando numerosos antioxidantes y metabolitos naturales que ayudan a proteger células y tejidos de la oxidación de los radicales libres gracias a la acción de Vaccinium myrtillus y Ginkgo biloba. Aparte de estas dos plantas con alegaciones contiene hasta 60 moléculas valoradas con alta plausividad cientifica y actividad para el necesario equilibrio de la respuesta ARE-Antioxidante, inflamatoria, circulación periferica, mejora la mitobiogenesis mitocondrial y la beta-oxidacion de acido grasos. Contiene significativa cantidad de NADH y vitamina D3 que contribuye a la funcion normal de los musculos y los dientes.

CONDICIONES PRIMARIAS

  • Neuroprotección y retinopatías: hereditarias, como la RP (más de 70 síndromes, enfermedad de Stargardt, Usher, etc.), diabética, degeneración macular, glaucoma, miopía magna, desprendimiento de retina.
  • Oftalmología general: queratoconjuntivitis, córnea, cataratas c/ lente, vítreo y uvea.
  • Senescencia: Potente antioxidante-ARE en senescencia a partir de los 30 años, detox, estrés oxidativo, inflamación, anti-isquémico y neuroprotector.

CONDICIONES SECUNDARAS

  • Edema macular cistoide (irvine-gass syndrome), dmae húmeda.
  • Enfermedades metabólicas hereditarias relacionadas con defectos en mitocondrias y/o peroxisomas.
  • Diabetes (retinopatia diabetica + pie diabético + osteodistrofia-fibrosis renal + neuropatia)
  • Flebotónico, antiarteriosclerosis, antiisquémico, antiangiogénesis.
  • Síndrome de ménière, acúfenos.
  • Inhibidor DHT.

[Véase Ficha Técnica para mayor información]

Ingredientes

Eye-flavon® (complejo balanceado de alta pureza y biodisponibilidad ocular de polifenoles y flavonoides de extractos de especies de Scutellaria baicalensis, Camelia sinnensis, Sophora japonica y Silybum marianum), Eye-metabol® (péptidos, aminoácidos, metabolitos y coenzimas: L-carnitina, ubiquinol, NADH), Retimax® (oligómeros optimizados de alta pureza y máxima disponibilidad extra dextrinizados con ácido nicotínico procedentes de polifenoles tipo Proantocianósidos-PAC de extractos Vaccinium mirtillus), Iribin® (complejo de alta pureza de Saponinas e Irinoides agliconas tipo Aucubina y Loganin de extractos de Euphrasia officinalis y Cornus officinalis), Restrol® (novedoso complejo balanceado de alta pureza y elevada biodisponibilidad de estilbenoides tipo resveratrol y flavonoides tipo no-PAC agliconas de extractos de Polygonum cuspidatum), Cypen® (alta pureza en sesquiterpenos de extractos Cyperus rotundus), EGb® 761 (extracto de Ginkgo biloba), Apocyn® (Vanilla planifolia), UMB-99® (Artemisia capillaris), estearato de magnesio (antiaglomerante), Capdex® (Capsaicina dextrinizada), Cypen® (alta pureza en sesquiterpenos de extractos Cyperus rotundus), luteína (Tagetes erecta), zinc sulfato, carbonato de sodio, manganeso citrato, selenometionina, colecalciferol. Cápsula: celulosa vegetal, óxido de hierro (colorante natural).

 

NUTRIENTES Aporte diario (1 cápsula)
Eye-flavon® 175 mg
     Scutellaria baicalensis 50 mg
     Camelia sinnensis 50 mg
     Sophora japonica 50 mg
     Silybum marianum 50 mg
Eye-metabol® 175 mg
     L-carnitina 25 mg
     Ubiquinol 20 mg
     NADH coenzima 5 mg
Retimax® 100 mg
Iribin® 100 mg
     Euphrasia officinalis 73,3 mg
     Cornus officinalis 26,7 mg
Restrol® 75 mg
EGb® 761 50 mg
Apocyn® 20 mg
UMB-99® 20 mg
Capdex® 15 mg
Cypen® 10 mg
Luteína 7,5 mg
Zinc 6 mg (60% VRN)
Vitamina B3 (ácido nicotínico) 5 mg (31,25% VRN)
Manganeso 1 mg (50% VRN)
Selenio 55 µg (50% VRN)
Vitamina D3

25 µg – 1000 UI

(500% VRN)

 

Alérgenos, compuestos sensitivos y otras características
Sin GMO Libre de OGM Vegano Vegano
Sin TIO2 Sin Óxido de Titanio Sin Soja Sin soja
Sin Lactosa Sin lactosa Sin Gluten Sin glúten
Sin Azucar Sin azúcar

 

Posología
Prevención de los efectos oxidativos y del envejecimiento en personas sanas menores de 45 años

Tomar 1 cápsula al día (1-0-0). Si fuera necesario, puede consumirse de forma continuada.

Prevención de los efectos oxidativos y del envejecimiento en personas sanas mayores de 45 años Tomar 2 cápsula al día (1-0-1). Si fuera necesario, puede consumirse de forma continuada
Neutralización y control de los efectos oxidativos exógenos en personas con hábitos inadecuados de vida o sometidas a condiciones medioambientales adversas Tomar 2 cápsula al día (1-0-1). Si fuera necesario, puede consumirse de forma continuada
Neutralización y control de los efectos oxidativos endógenos, debidos a enfermedades crónicas, inflamatorias, autoinmunes, degenerativas o convalecencias Tomar 3 cápsulas al día (1-1-1). En enfermedades crónicas puede consumirse de forma continuada. En convalecencias, tomar 3 cápsulas al día (1-1-1) durante 3 meses, después reducir la dosis a 2 cápsulas diarias (1-0-1) durante otros 3 meses y nuevamente, reducir la dosis a 1 cápsula diaria (1-0-0) durante los 3 meses siguientes hasta retirada. Si fuera necesario, podría consumirse de forma continuada.
Neutralización y control de los efectos oxidativos que afectan a la función reproductiva del hombre y de la mujer, debidos a estrés oxidativo por diferentes causas, tanto endógenas como exógenas Tomar 3 cápsulas al día (1-1-1) durante 3-6 meses. Este ciclo se puede repetir según criterio facultativo, mientras sea necesario. Se pude utilizar también a dosis de 1-2 cápsulas al día como preventivo del envejecimiento ovárico o testicular, en parejas que optan por posponer la concepción de sus hijos
Utilización conjunta

Antioximax® puede combinarse con los siguientes productos de Celavista:

  • NPD1-1000®, Rosmarine® y Angiomax®
Bibliografía
  1. Zhao T, Tang H, Xie L, Zheng Y, Ma Z, Sun Q, et al. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Pharm Pharmacol. 2019 Sep;71(9):1353-69. https://pubmed.ncbi.nlm.nih.gov/31236960/
  2. Gong X. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Trends in Pharmacological Sciences. 1999 May 1;20(5):191-6. https://doi.org/10.1016/S0165-6147(98)01276-0
  3. Kim YO, Leem K, Park J, Lee P, Ahn DK, Lee BC, et al. Cytoprotective effect of Scutellaria baicalensis in CA1 hippocampal neurons of rats after global cerebral ischemia. J Ethnopharmacol. 2001 Oct;77(2-3):183-8. https://pubmed.ncbi.nlm.nih.gov/11535362/
  4. Gabrielska J, Oszmiański J, Zyłka R, Komorowska M. Antioxidant activity of flavones from Scutellaria baicalensis in lecithin liposomes. Z Naturforsch C J Biosci. 1997 Nov-Dec;52(11-12):817-23. https://pubmed.ncbi.nlm.nih.gov/9463939/
  5. Fang J, Wang H, Zhou J, Dai W, Zhu Y, Zhou Y, et al. Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway. Drug Des Devel Ther. 2018;12:2497-508. https://pubmed.ncbi.nlm.nih.gov/30127597/
  6. Wang M, Zhao J, Zhang H, Li K, Niu L, Wang Y, et al. Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. Oxidative Medicine and Cellular Longevity. 2020 Mar 23;2020:1-22. https://doi.org/10.1155/2020/9410952
  7. Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, et al. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review. Biomed Pharmacother. 2017 Nov;95:1260-75. https://pubmed.ncbi.nlm.nih.gov/28938517/
  8. Varilek GW, Yang F, Lee EY, deVilliers WJS, Zhong J, Oz HS, et al. Green Tea Polyphenol Extract Attenuates Inflammation in Interleukin-2–Deficient Mice, a Model of Autoimmunity. The Journal of Nutrition. 2001 Jul 1;131(7):2034-9. https://doi.org/10.1093/jn/131.7.2034
  9. Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: A literature review. Chinese Medicine. 2010;5(1):13. https://doi.org/10.1186/1749-8546-5-13
  10. Pérez-Vargas J, Zarco N, Vergara P, Shibayama M, Segovia J, Tsutsumi V, et al. l-Theanine prevents carbon tetrachloride-induced liver fibrosis via inhibition of nuclear factor κB and down-regulation of transforming growth factor β and connective tissue growth factor. Hum Exp Toxicol. 2016 Feb;35(2):135-46. https://doi.org/10.1177/0960327115578864
  11. Yu H, Jove R. The STATs of cancer — new molecular targets come of age. Nat Rev Cancer. 2004 Feb;4(2):97-105. https://doi.org/10.1038/nrc1275
  12. Meng J, Chen Y, Wang J, Qiu J, Chang C, Bi F, et al. EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway. Ann Transl Med. 2020 Mar;8(5):200. https://pubmed.ncbi.nlm.nih.gov/32309347/
  13. He X, Bai Y, Zhao Z, Wang X, Fang J, Huang L, et al. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review. J Ethnopharmacol. 2016 Jul 1;187:160-82. https://pubmed.ncbi.nlm.nih.gov/27085938/
  14. Marmouzi I, Bouyahya A, Ezzat SM, El Jemli M, Kharbach M. The food plant Silybum marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and clinical evidence. J Ethnopharmacol. 2021 Jan 30;265:113303. https://pubmed.ncbi.nlm.nih.gov/32877720/
  15. Manna SK, Aggarwal BB. Vesnarinone suppresses TNF-induced activation of NF-kappa B, c-Jun kinase, and apoptosis. J Immunol. 2000 Jun 1;164(11):5815-25. https://pubmed.ncbi.nlm.nih.gov/10820260/
  16. Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H. Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol. 2020 May;43(3):240-54. https://pubmed.ncbi.nlm.nih.gov/30033764/
  17. Pennisi M, Lanza G, Cantone M, D’Amico E, Fisicaro F, Puglisi V, et al. Acetyl-L-Carnitine in Dementia and Other Cognitive Disorders: A Critical Update. Nutrients. 2020 May 12;12(5):E1389. https://pubmed.ncbi.nlm.nih.gov/32408706/
  18. Zanelli SA, Solenski NJ, Rosenthal RE, Fiskum G. Mechanisms of ischemic neuroprotection by acetyl-L-carnitine. Ann N Y Acad Sci. 2005 Aug;1053:153-61. https://pubmed.ncbi.nlm.nih.gov/16179519/
  19. Scafidi S, Racz J, Hazelton J, McKenna MC, Fiskum G. Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev Neurosci. 2010;32(5-6):480-7. https://pubmed.ncbi.nlm.nih.gov/21228558/
  20. Patel SP, Sullivan PG, Lyttle TS, Magnuson DS, Rabchevsky AG. Acetyl-L-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience. 2012 May 17;210:296-307. https://pubmed.ncbi.nlm.nih.gov/22445934/
  21. Ishii T, Shimpo Y, Matsuoka Y, Kinoshita K. Anti-apoptotic effect of acetyl-l-carnitine and I-carnitine in primary cultured neurons. Jpn J Pharmacol. 2000 Jun;83(2):119-24. https://pubmed.ncbi.nlm.nih.gov/10928324/
  22. Zhang R, Zhang H, Zhang Z, Wang T, Niu J, Cui D, et al. Neuroprotective effects of pre-treatment with l-carnitine and acetyl-L-carnitine on ischemic injury in vivo and in vitro. Int J Mol Sci. 2012;13(2):2078-90. https://pubmed.ncbi.nlm.nih.gov/22408439/
  23. Xu S, Waddell J, Zhu W, Shi D, Marshall AD, McKenna MC, et al. In vivo longitudinal proton magnetic resonance spectroscopy on neonatal hypoxic-ischemic rat brain injury: Neuroprotective effects of acetyl-L-carnitine. Magn Reson Med. 2015 Dec;74(6):1530-42. https://pubmed.ncbi.nlm.nih.gov/25461739/
  24. Virmani MA, Caso V, Spadoni A, Rossi S, Russo F, Gaetani F. The Action of Acetyl-l-Carnitine on the Neurotoxicity Evoked by Amyloid Fragments and Peroxide on Primary Rat Cortical Neurones. Annals of the New York Academy of Sciences. 2006 Jan 25;939(1):162-78. https://doi.org/10.1111/j.1749-6632.2001.tb03623.x
  25. Calabrese V, Ravagna A, Colombrita C, Scapagnini G, Guagliano E, Calvani M, et al. Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: Involvement of the transcription factor Nrf2. J Neurosci Res. 2005 Feb 15;79(4):509-21. https://doi.org/10.1002/jnr.20386
  26. Ferreira GC, McKenna MC. L-Carnitine and Acetyl-L-carnitine Roles and Neuroprotection in Developing Brain. Neurochem Res. 2017 Jun;42(6):1661-75. https://pubmed.ncbi.nlm.nih.gov/28508995/
  27. Hota KB, Hota SK, Chaurasia OP, Singh SB. Acetyl-L-carnitine-mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus. 2012 Apr;22(4):723-36. https://pubmed.ncbi.nlm.nih.gov/21542052/
  28. Sergi G, Pizzato S, Piovesan F, Trevisan C, Veronese N, Manzato E. Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin Exp Res. 2018 Feb;30(2):133-8. https://pubmed.ncbi.nlm.nih.gov/28534301/
  29. Pescosolido N, Imperatrice B, Karavitis P. The Aging Eye and the Role of L-Carnitine and its Derivatives. Drugs in R & D. 2008;9(Supplement 1):3-14. https://doi.org/10.2165/0126839-200809001-00002
  30. Zhang Y, Liu J, Chen XQ, Oliver Chen CY. Ubiquinol is superior to ubiquinone to enhance Coenzyme Q10 status in older men. Food Funct. 2018 Nov 14;9(11):5653-9. https://pubmed.ncbi.nlm.nih.gov/30302465/
  31. Edwards G, Lee Y, Kim M, Bhanvadia S, Kim KY, Ju WK. Effect of Ubiquinol on Glaucomatous Neurodegeneration and Oxidative Stress: Studies for Retinal Ganglion Cell Survival and/or Visual Function. Antioxidants (Basel). 2020 Oct 3;9(10):E952. https://pubmed.ncbi.nlm.nih.gov/33023026/
  32. Ju WK, Shim MS, Kim KY, Bu JH, Park TL, Ahn S, et al. Ubiquinol promotes retinal ganglion cell survival and blocks the apoptotic pathway in ischemic retinal degeneration. Biochem Biophys Res Commun. 2018 09 18;503(4):2639-45. https://pubmed.ncbi.nlm.nih.gov/30107910/
  33. Jadeja RN, Thounaojam MC, Bartoli M, Martin PM. Implications of NAD+ Metabolism in the Aging Retina and Retinal Degeneration. Oxid Med Cell Longev. 2020;2020:2692794. https://pubmed.ncbi.nlm.nih.gov/32454935/
  34. Cimaglia G, Votruba M, Morgan JE, André H, Williams PA. Potential Therapeutic Benefit of NAD+ Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients. 2020 Sep 19;12(9):E2871. https://pubmed.ncbi.nlm.nih.gov/32961812/
  35. Zeng Y, Wang S, Wei L, Cui Y, Chen Y. Proanthocyanidins: Components, Pharmacokinetics and Biomedical Properties. Am J Chin Med. 2020 Jan;48(04):813-69. https://doi.org/10.1142/S0192415X2050041X
  36. Yang L, Xian D, Xiong X, Lai R, Song J, Zhong J. Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. Biomed Res Int. 2018;2018:8584136. https://pubmed.ncbi.nlm.nih.gov/29750172/
  37. Strathearn KE, Yousef GG, Grace MH, Roy SL, Tambe MA, Ferruzzi MG, et al. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease. Brain Res. 2014 Mar 25;1555:60-77. https://pubmed.ncbi.nlm.nih.gov/24502982/
  38. Ma J, Gao SS, Yang HJ, Wang M, Cheng BF, Feng ZW, et al. Neuroprotective Effects of Proanthocyanidins, Natural Flavonoids Derived From Plants, on Rotenone-Induced Oxidative Stress and Apoptotic Cell Death in Human Neuroblastoma SH-SY5Y Cells. Front Neurosci. 2018;12:369. https://pubmed.ncbi.nlm.nih.gov/29904339/
  39. Rahnasto-Rilla M, Tyni J, Huovinen M, Jarho E, Kulikowicz T, Ravichandran S, et al. Natural polyphenols as sirtuin 6 modulators. Sci Rep. 2018 03 7;8(1):4163. https://pubmed.ncbi.nlm.nih.gov/29515203/
  40. Zhang J, Xiang H, Liu J, Chen Y, He RR, Liu B. Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Theranostics. 2020;10(18):8315-42. https://pubmed.ncbi.nlm.nih.gov/32724473/
  41. Anderson KA, Green MF, Huynh FK, Wagner GR, Hirschey MD. SnapShot: Mammalian Sirtuins. Cell. 2014 Nov 6;159(4):956-956.e1. https://pubmed.ncbi.nlm.nih.gov/25417168/
  42. You W, Zheng W, Weiss S, Chua KF, Steegborn C. Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives. Sci Rep. 2019 Dec;9(1) https://doi.org/10.1038/s41598-019-55654-1
  43. Wang H, Zhou XM, Wu LY, Liu GJ, Xu WD, Zhang XS, et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury. J Neuroinflammation. 2020 Jun 15;17(1):188. https://pubmed.ncbi.nlm.nih.gov/32539839/
  44. Song M, Kim H, Park S, Kwon H, Joung I, Kim Kwon Y. Aucubin Promotes Differentiation of Neural Precursor Cells into GABAergic Neurons. Exp Neurobiol. 2018 Apr;27(2):112-9. https://pubmed.ncbi.nlm.nih.gov/29731677/
  45. Shen B, Zhao C, Wang Y, Peng Y, Cheng J, Li Z, et al. Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/HO-1 and AMPK signalling pathways. J Cell Mol Med. 2019 06;23(6):4063-75. https://pubmed.ncbi.nlm.nih.gov/30950217/
  46. Jung E, Park SB, Jung WK, Kim HR, Kim J. Aucubin, An Active Ingredient in Aucuba japonica, Prevents N-methyl-N-nitrosourea-induced Retinal Degeneration in Mice. Molecules. 2019 Dec 4;24(24):E4437. https://pubmed.ncbi.nlm.nih.gov/31817154/
  47. Xu YD, Cui C, Sun MF, Zhu YL, Chu M, Shi YW, et al. Neuroprotective Effects of Loganin on MPTP-Induced Parkinson’s Disease Mice: Neurochemistry, Glial Reaction and Autophagy Studies. J Cell Biochem. 2017 10;118(10):3495-510. https://pubmed.ncbi.nlm.nih.gov/28338241/
  48. Chu LW, Cheng KI, Chen JY, Cheng YC, Chang YC, Yeh JL, et al. Loganin prevents chronic constriction injury-provoked neuropathic pain by reducing TNF-α/IL-1β-mediated NF-κB activation and Schwann cell demyelination. Phytomedicine. 2020 Feb;67:153166. https://pubmed.ncbi.nlm.nih.gov/31955133/
  49. Hu J, Zhou J, Wu J, Chen Q, Du W, Fu F, et al. Loganin ameliorates cartilage degeneration and osteoarthritis development in an osteoarthritis mouse model through inhibition of NF-κB activity and pyroptosis in chondrocytes. J Ethnopharmacol. 2020 Jan 30;247:112261. https://pubmed.ncbi.nlm.nih.gov/31577939/
  50. Hwang ES, Kim HB, Lee S, Kim MJ, Lee SO, Han SM, et al. Loganin enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments. Physiol Behav. 2017 03 15;171:243-8. https://pubmed.ncbi.nlm.nih.gov/28069458/
  51. Sohn E, Kim J, Kim CS, Lee YM, Kim JS. Extract of Polygonum cuspidatum Attenuates Diabetic Retinopathy by Inhibiting the High-Mobility Group Box-1 (HMGB1) Signaling Pathway in Streptozotocin-Induced Diabetic Rats. Nutrients. 2016 Mar 3;8(3):140. https://pubmed.ncbi.nlm.nih.gov/26950148/
  52. Park B, Jo K, Lee TG, Lee IS, Kim JS, Kim CS. Polygonum cuspidatum stem extract (PSE) ameliorates dry eye disease by inhibiting inflammation and apoptosis. J Exerc Nutrition Biochem. 2019 Dec 31;23(4):14-22. https://pubmed.ncbi.nlm.nih.gov/32018341/
  53. Toro MD, Nowomiejska K, Avitabile T, Rejdak R, Tripodi S, Porta A, et al. Effect of Resveratrol on In Vitro and In Vivo Models of Diabetic Retinophathy: A Systematic Review. Int J Mol Sci. 2019 Jul 17;20(14):E3503. https://pubmed.ncbi.nlm.nih.gov/31319465/
  54. Josifovska N, Albert R, Nagymihály R, Lytvynchuk L, Moe MC, Kaarniranta K, et al. Resveratrol as Inducer of Autophagy, Pro-Survival, and Anti-Inflammatory Stimuli in Cultured Human RPE Cells. Int J Mol Sci. 2020 Jan 27;21(3):E813. https://pubmed.ncbi.nlm.nih.gov/32012692/
  55. Abu-Amero KK, Kondkar AA, Chalam KV. Resveratrol and Ophthalmic Diseases. Nutrients. 2016 Apr 5;8(4):200. https://pubmed.ncbi.nlm.nih.gov/27058553/
  56. Bola C, Bartlett H, Eperjesi F. Resveratrol and the eye: activity and molecular mechanisms. Graefes Arch Clin Exp Ophthalmol. 2014 May;252(5):699-713. https://pubmed.ncbi.nlm.nih.gov/24652235/
  57. Park B, Jo K, Lee TG, Hyun SW, Kim JS, Kim CS. Polydatin Inhibits NLRP3 Inflammasome in Dry Eye Disease by Attenuating Oxidative Stress and Inhibiting the NF-κB Pathway. Nutrients. 2019 Nov 15;11(11):E2792. https://pubmed.ncbi.nlm.nih.gov/31731792/
  58. Labkovich M, Jacobs EB, Bhargava S, Pasquale LR, Ritch R. Ginkgo Biloba Extract in Ophthalmic and Systemic Disease, With a Focus on Normal-Tension Glaucoma. Asia Pac J Ophthalmol (Phila). 2020 May-Jun;9(3):215-25. https://pubmed.ncbi.nlm.nih.gov/32282348/
  59. Bungau S, Abdel-Daim MM, Tit DM, Ghanem E, Sato S, Maruyama-Inoue M, et al. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. Oxid Med Cell Longev. 2019;2019:9783429. https://pubmed.ncbi.nlm.nih.gov/30891116/
  60. Wang Y, Tao J, Jiang M, Yao Y. Apocynin ameliorates diabetic retinopathy in rats: Involvement of TLR4/NF-κB signaling pathway. Int Immunopharmacol. 2019 Aug;73:49-56. https://pubmed.ncbi.nlm.nih.gov/31078925/
  61. Liu F, Lin C, Hong J, Cai C, Zhang W, Zhang J, et al. Apocynin protects retina cells from ultraviolet radiation damage via inducing sirtuin 1. J Drug Target. 2020 03;28(3):330-8. https://pubmed.ncbi.nlm.nih.gov/31479288/
  62. Soares MPR, Silva DP, Uehara IA, Ramos ES, Alabarse PVG, Fukada SY, et al. The use of apocynin inhibits osteoclastogenesis. Cell Biol Int. 2019 May;43(5):466-75. https://pubmed.ncbi.nlm.nih.gov/30761659/
  63. Hou L, Sun F, Huang R, Sun W, Zhang D, Wang Q. Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson’s disease model. Redox Biol. 2019 04;22:101134. https://pubmed.ncbi.nlm.nih.gov/30798073/
  64. Qin YY, Li M, Feng X, Wang J, Cao L, Shen XK, et al. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic Biol Med. 2017 03;104:333-45. https://pubmed.ncbi.nlm.nih.gov/28132925/
  65. Cruz LF, Figueiredo GF, Pedro LP, Amorin YM, Andrade JT, Passos TF, et al. Umbelliferone (7-hydroxycoumarin): A non-toxic antidiarrheal and antiulcerogenic coumarin. Biomed Pharmacother. 2020 Sep;129:110432. https://pubmed.ncbi.nlm.nih.gov/32768935/
  66. Seong SH, Ali MY, Jung HA, Choi JS. Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase A, self-amyloidβ aggregation, and lipid peroxidation. Bioorg Chem. 2019 11;92:103293. https://pubmed.ncbi.nlm.nih.gov/31557622/
  67. Patowary P, Pathak MP, Zaman K, Raju PS, Chattopadhyay P. Research progress of capsaicin responses to various pharmacological challenges. Biomed Pharmacother. 2017 Dec;96:1501-12. https://pubmed.ncbi.nlm.nih.gov/29198921/
  68. Kamala A, Middha SK, Karigar CS. Plants in traditional medicine with special reference to Cyperus rotundus L.: a review. 3 Biotech. 2018 Jul;8(7):309. https://pubmed.ncbi.nlm.nih.gov/30002998/
  69. Pal D, Dutta S. Evaluation of the Antioxidant activity of the roots and Rhizomes ofCyperus rotundusL.. Indian J Pharm Sci. 2006;68(2):256. http://dx.doi.org/10.4103/0250-474X.25731
  70. Kumar SVS, Mishra SH. Hepatoprotective Activity Of Rhizomes Of Cyperus Rotundus Linn Against Carbon Tetrachloride-Induced Hepatotoxicity. Indian J Pharm Sci. 2005;67(1):84. https://www.ijpsonline.com/articles/hepatoprotective-activity-of-rhizomes-of-cyperus-rotundus-linn-against-carbon-tetrachlorideinduced-hepatotoxicity.pdf
  71. Shakerin Z, Esfandiari E, Razavi S, Alaei H, Ghanadian M, Dashti G. Effects of Cyperus rotundus Extract on Spatial Memory Impairment and Neuronal Differentiation in Rat Model of Alzheimer’s Disease. Adv Biomed Res. 2020;9:17. https://pubmed.ncbi.nlm.nih.gov/32775310/
  72. Li LH, Lee JC, Leung HH, Lam WC, Fu Z, Lo ACY. Lutein Supplementation for Eye Diseases. Nutrients. 2020 Jun 9;12(6):E1721. https://pubmed.ncbi.nlm.nih.gov/32526861/
  73. Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano A, Marchesini G. The Effect of Lutein on Eye and Extra-Eye Health. Nutrients. 2018 Sep 18;10(9):E1321. https://pubmed.ncbi.nlm.nih.gov/30231532/
  74. Gilbert R, Peto T, Lengyel I, Emri E. Zinc Nutrition and Inflammation in the Aging Retina. Mol Nutr Food Res. 2019 08;63(15):e1801049. https://pubmed.ncbi.nlm.nih.gov/31148351/
  75. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017 02 17;355(6326):756-60. https://pubmed.ncbi.nlm.nih.gov/28209901/
  76. Hui F, Tang J, Williams PA, McGuinness MB, Hadoux X, Casson RJ, et al. Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: A crossover randomized clinical trial. Clin Exp Ophthalmol. 2020 09;48(7):903-14. https://pubmed.ncbi.nlm.nih.gov/32721104/
  77. Erikson KM, Aschner M. Manganese: Its Role in Disease and Health. Metal ions in life sciences. NLM (Medline). 2019. https://pubmed.ncbi.nlm.nih.gov/30855111/
  78. Winther KH, Rayman MP, Bonnema SJ, Hegedüs L. Selenium in thyroid disorders – essential knowledge for clinicians. Nat Rev Endocrinol. 2020 03;16(3):165-76. https://pubmed.ncbi.nlm.nih.gov/32001830/
  79. Ventura M, Melo M, Carrilho F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int J Endocrinol. 2017;2017:1297658. https://pubmed.ncbi.nlm.nih.gov/28255299/
  80. Jamali N, Sorenson CM, Sheibani N. Vitamin D and regulation of vascular cell function. Am J Physiol Heart Circ Physiol. 2018 04 1;314(4):H753-H765. https://pubmed.ncbi.nlm.nih.gov/29351464/
  81. Askari G, Rafie N, Miraghajani M, Heidari Z, Arab A. Association between vitamin D and dry eye disease: A systematic review and meta-analysis of observational studies. Cont Lens Anterior Eye. 2020 10;43(5):418-25. https://pubmed.ncbi.nlm.nih.gov/32169320/
  82. Liu J, Dong Y, Wang Y. Vitamin D deficiency is associated with dry eye syndrome: a systematic review and meta-analysis. Acta Ophthalmol. 2020 Dec;98(8):749-54. https://pubmed.ncbi.nlm.nih.gov/32421222/
Celavista
Celavista
Celavista From life for life

Ciencias biomédicas para prevenir el deterioro y dar vida a los años

+34 946 853 421

+34 689 13 43 18

info@celavista.com

Parque Científico de la UPV/EHU
Edificio SEDE
Campus Universitario Bizkaia
Sarriena auzoa s/n
48940 Leioa